
React native
JSX, components, props, and state

An overview

We’ll at each of these in
much more detail later.

See the tutorials at https://facebook.github.io/react-native/docs/tutorial

JSX

• JSX = JavaScript + XML
• XML is a tagging system similar to HTML
• Actually uses ES2015 (also called ES6), not JavaScript (ES5).

• ES = ECMAScript

• Import, from, class, extends are all ES6 features
• See this link for ES6 features: https://babeljs.io/docs/en/learn/

• JSX allows us to embed XML in JavaScript
• In HTML we embed JavaScript in HTML

https://babeljs.io/docs/en/learn/

Components

• Components are ”pieces” that fit together to make an app
• Conceptually, components are like JavaScript functions
• They split the UI into independent, reusable pieces
• Components are made of “elements” or pieces of JSX code
• Different components implement different types of UI elements like text or a

button.
• You can make your own components by extending built-in components

(this is why we looked at objects in JS).

We’ll look more closely
at components later.

Components

• There are many available components in these categories:
• Basic Components
• User Interface
• List Views
• iOS-specific
• Android-specific
• Others

• Basic React Native components can be found here:
• https://facebook.github.io/react-native/docs/components-and-apis.html

• Dev’s have also created components that you can include. See
• http://www.awesome-react-native.com/#components

We’ll look more closely
at components later.

https://facebook.github.io/react-native/docs/components-and-apis.html
http://www.awesome-react-native.com/

Hello world

import React, { Component } from 'react';
import { Text, View } from 'react-native';

export default class HelloWorldApp extends Component {
render() {

return (
<View>

<Text>Hello world!</Text>
</View>

);
}

}

JSX: XML embedded in JavaScript

Component: often something you see on the screen

Notice the class syntax:
”class” and “extends”

Must import everything you use; import is ES6 syntax

{ Component } from 'react’;
// this is destructuring syntax from ES6
// same as:
Import React from “react”;
Let Component = React.Component;

render() causes the component to be displayed

This is in App.js

props

• props = properties
• Most components can be customized when they

are created, with different parameters.
• These creation parameters are called props.
• Once used, props cannot be changed (see state

on a later slide)

props
• props can be used in your own components.
• props make a component reusable in your app,

• Can have different properties in each use.
• Like an instance variable
• refer to this.props in your render function to access the values

passed through props.

Props I
import React, { Component } from 'react';

import { AppRegistry, Image } from 'react-native';

export default class Bananas extends Component {

render() {

let pic = {

uri:
'https://upload.wikimedia.org/wikipedia/commons/d/de/Ba
nanavarieties.jpg'

};

return (

<Image source={pic} style={{width: 193, height: 110}}/>

);

}

}

“let” defines a variable “pic” of type “uri”

“source” is a prop for the Image component

Notice that {pic} is surrounded by braces inside
the render() function,
This embeds the variable pic into JSX.

You can put any JavaScript expression inside
braces in JSX.

Code at: https://facebook.github.io/react-native/docs/props
Replace the code in App.js
with the code on this slide

render() returns the React elements to be
displayed. Normally contains JSX

See this link for info about the Image component:
https://facebook.github.io/react-native/docs/image.html

Props II
import React, { Component } from 'react';
import { AppRegistry, Text, View } from 'react-native’;
class Greeting extends Component {
render() {
return (
<Text>Hello {this.props.name}!</Text>

);
}

}

Can add styles directly
to a text component

Must import everything you
use; import is ES6 syntax

render() returns the React elements to be
displayed. Normally created via JSX

Continued on next slide

Props II (cont)
export default class LotsOfGreetings extends Component {
render() {
return (
<View style={{alignItems: 'center'}}>
<Greeting name='Rexxar' />
<Greeting name='Jaina' />
<Greeting name='Valeera' />

</View>
);

}
}

export makes this component
available in the app

A View component is a container for other
components, to help control style and layout.

Notice the use of a
style just like inline CSS

We create three instances of the Greeting
component (previous slide) using props to
instantiate the instance variable “name”

The Greeting component returns a Text
component which is embedded in the View
component.

Replace the code in App.js with the
code on this slide and previous slide

App

• To build a static app just need
• Props
• Text component
• View component
• Image component

• Dynamic apps require state

State vs Props

• The state is mutable while props are immutable.
• This means that state can be updated in the future while props cannot be

updated.
• Presentational components should get all data by passing props.
• Only container components should have state.

State

• initialize state in the constructor
• call setState when you want to change it.

import React, { Component } from 'react';

import { AppRegistry, Text, View } from 'react-native';

class Blink extends Component {

constructor(props) {

super(props);

this.state = {isShowingText: true};

// Toggle the state every second

setInterval(() => {

this.setState(previousState => {

return { isShowingText:
!previousState.isShowingText };

});

}, 1000);

}

render() {

let display = this.state.isShowingText ?
this.props.text : ' ';

return (

<Text>{display}</Text>

);

}}

export default class BlinkApp extends Component {
render() {

return (

<View>

<Blink text='I love to blink' />

<Blink text='Yes blinking is so great' />

<Blink text='Why did they ever take this out of
HTML' />

<Blink text='Look at me look at me look at me' />

</View>

);}}
See next slide for explaination

import React, { Component } from 'react';

import { AppRegistry, Text, View } from 'react-native';

class Blink extends Component {

constructor(props) {

super(props);

this.state = {isShowingText: true};

// Toggle the state every second
setInterval(() => {

this.setState(previousState => {

return { isShowingText: !previousState.isShowingText };

});

}, 1000);

}

render() {

let display = this.state.isShowingText ? this.props.text : ' ';

return (

<Text>{display}</Text>

);

}}

Class Blink inherits from Component so it becomes a component.

Classes have a Constructor where you initialize state.

The => syntax is a function shorthand. Here we define the function
setInterval which takes no parameters. See
https://babeljs.io/docs/en/learn/

setState takes a value and an optional callback function. Here we
return a new value for isShowingText. The render() function will
be called to update the component.

display takes a value based on the value of isShowingText. It
either uses the value of the prop text or display gets the empty
string.

setState()

• setState() enqueues changes to the component state and tells
React that this component and its children need to be re-rendered
with the updated state.
• This is the primary method you use to update the user interface in response

to event handlers and server responses.
• setState() is a request not an immediate command to update the

component.
• React may delay the update and then update several components in a single

pass.
• React does not guarantee that the state changes are applied immediately.

Example, explained

• probably won't be setting state with a timer in general.
• Do set state when:

• new data arrives from the server,
• or from user input.

• can also use a state container like Redux or Mobx to control your data flow.
• Then would use Redux or Mobx to modify your state rather than calling setState directly.

• Example on previous slide:
• When setState is called, BlinkApp will re-render its Component (the render method is called).
• By calling setState within the Timer, the component will re-render every time the Timer ticks.

